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Analyses of thermal expansion behavior

of intergranular two-phase composites
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Both analytical modeling and numerical simulations were performed to analyze residual
thermal stresses and coefficients of thermal expansion (CTEs) of intergranular two-phase
composites in a two-dimensional sense. A composite-circle model was adopted for
analytical modeling. Model microstructures consisting of square-array, hexagon-array, and
brick wall-array of grains with an intergranular phase as well as an actual microstructure of
random-array grains with an intergranular phase were adopted for numerical simulations.
The results showed that in predicting CTEs, the simple analytical model represents the
two-dimensional composite well except that with brick wall-array grains, which induced
significant anisotropic CTEs in the composite. The residual thermal stresses in composites
were also discussed. C© 2001 Kluwer Academic Publishers

1. Introduction
Two-phase microstructures offer some unique oppor-
tunities for improving mechanical properties of struc-
tural ceramic materials [1]. Since the two phases have
different thermal-mechanical properties, residual ther-
mal stresses develop during cooling of the composite
from its fabrication temperature. These residual thermal
stresses can, in some instances, result in toughening ef-
fects for particle-reinforced ceramic composites [2–4].
To analyze these toughening effects, an understanding
of the residual thermal stress distributions in the com-
posite is required. Also, the thermal expansion behavior
of the composite is affected by the existence of residual
thermal stresses. While the thermal expansion behav-
ior of composites can be characterized by their effec-
tive coefficients of thermal expansion (CTEs) [5–9],
these effective CTEs are inevitably functions of resid-
ual thermal stresses and hence of the microstructures of
composites. However, the relationship between effec-
tive CTEs and microstructures of composites has not
been systematically studied.

The purpose of the present study was to examine
residual thermal stresses and effective CTEs of inter-
granular two-phases composites in a two-dimensional
sense. First, analytical modeling was performed by
using a simple composite-circle model to represent
the intergranular two-phase composite. Then, a re-
cently developed object oriented finite element analy-
sis (OOF) [10] was adopted for numerical simulations.
OOFis uniquely designed to operate on microstructural
images, and thus can incorporate the actual microstruc-
ture. Model microstructures of square-array, hexagon-
array, and brick wall-array grains with an intergranular
phase as well as an actual microstructure were adopted
for simulations. Whereas square-array and hexagon-
array grains simulate equilateral grains, brick wall-

array grains simulate aligned elongated grains. The ac-
tual microstructure has a random distribution of grains.
The distributions of residual thermal stresses in each
system were discussed, and the effective CTEs ob-
tained from numerical simulations were compared to
those predicted from analytical modeling. The phys-
ical meaning of the deviation of the effective CTEs
from the rule-of-mixtures CTE for two-phase compos-
ites was also discussed.

2. Analytical modeling
For an intergranular two-phase composite, a composite-
circle (Fig. 1) can be used as the representative volume
element in a two-dimensional sense such that the inner
circle and the outer annulus represent the grain and the
intergranular phase, respectively. Fig. 1 shows that a
circular region of phase 1 with a radiusa is surrounded
by a concentric annulus of phase 2 with an outer ra-
diusb, such thata2/b2 corresponds to the area fraction
of phase 1 in the composite. Residual thermal stresses
develop during the temperature change in the system
because of the thermal-mechanical mismatch between
the two phases. The stresses can be determined by the
procedure of first allowing the two phases to exhibit un-
constrained differential thermal strains during the tem-
perature change. Then, a radial stress,σa, is placed at
the interface to restore the displacement continuity at
the interface.

With an interfacial stress,σa, the radial and the tan-
gential stresses in phases 1 and 2, are [11]

σ1,r = σa (1a)

σ1,t = σa (1b)
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Figure 1 Schematic showing the composite-circle model for intergran-
ular two-phase composites in a two-dimensional sense.

σ2,r = a2(b2− r 2)σa

r 2(b2− a2)
(2a)

σ2,t = −a2(b2+ r 2)σa

r 2(b2− a2)
(2b)

wherer is the distance from the center of the composite-
circle, the subscripts 1 and 2 denote phase 1 and phase 2,
and the subscripts r and t denote the radial and the
tangential components, respectively.

With a temperature change,1T , the strain consists
of two components: the elastic strain and the uncon-
strained thermal strain. The tangential strains in phases
1 and 2,ε1,t andε2,t, are respectively

ε1,t = σ1,t − ν1σ1,r

E1
+ α11T (3)

ε2,t = σ2,t − ν2σ2,r

E2
+ α21T (4)

whereE,ν, andα are Young’s modulus, Poisson’s ratio,
and the CTE, respectively.

The residual stresses in the system are contingent
upon the solution of the interfacial stress,σa, which
can be determined by the continuity condition at the
interface. Continuity of the radial displacement at the
interface is required. With the tangential strain propor-
tional to the radial displacement, this continuity condi-
tion becomes

ε1,t = ε2,t (at r = a) (5)

Combination of Equations 1 through 5 yields

σa = (α2− α1)1T
1− ν1

E1
+ ((b2+a2)/(b2−a2))+ ν2

E2

(6)

The stress invariant,σr+ σt, can be obtained from Equa-
tions 1, 2, and 6, such that

σ1,r + σ1,t = 2(α2− α1)1T
1− ν1

E1
+ ((b2+a2)/(b2−a2))+ ν2

E2

(in phase 1) (7)

σ2,r + σ2,t = −2a2(α2− α1)1T
(b2−a2)(1− ν1)

E1
+ b2+a2+ (b2−a2)ν2

E2

(in phase 2) (8)

The deformation of the composite-circle during the
temperature change is dictated by the radial dis-
placement atr = b. Hence, the effective CTE of the
composite-circle,α∗, is defined byε2,t at r = b, such
that

α∗ = ε2,t

1T
(at r = b) (9)

Substitution of Equations 2, 4, and 6 into 9 yields

α∗ = α2− 2a2(α2− α1)

(b2− a2)
[
(1− ν1) E2

E1
+ ν2

]
+ b2+ a2

(10)

In the specific case ofE1= E2 and ν1= ν2, Equa-
tions 10 becomes

α∗ = αrom = a2α1+ (b2− a2)α2

b2
(11)

Hence, when the two phases have the same elastic con-
stants, the effective CTE of the composite can be ob-
tained using rule of mixtures (rom).

Ignoring the difference in Poisson’s ratio between the
two phases and assumingE1> E2, it can be obtained
from Equations 10 and 11 thatα∗<αrom whenα1<α2,
andα∗>αromwhenα1>α2. Hence,α∗ shifts fromαrom
in the direction of the CTE of the harder phase.

3. Numerical simulations
Residual thermal stresses and effective CTEs of two-
phase composites were numerically simulated using
OOF, and the plane-stress case was considered. The
simulations were conducted on both model microstruc-
tures and an actual microstructure. A two-dimensional
uniform grid was used and each grid consisted of two
triangular elements.∗ The micrographs were digitized
to a portable pixel map (ppm) format, and each pixel
corresponded to a grid. Hence, meshing inOOF is ob-
tained simply by converting a micrograph to appm
format. Therefore, the uniqueness ofOOF is that it
can operate directly on microstructural images. In the
present study, each digitized micrograph consists of
64,800 elements. The thermal/mechanical properties
used in the present numerical simulations are listed
in Table I which are pertinent to the Si3N4/glass sys-
tem [12] without considering the anisotropic properties

∗ An adaptive mesh was newly included inPPM2OOFwhich allows ele-
ments have different sizes at different parts of the system. The accuracy
of the simulated results can be improved by using a higher resolution
(i.e., more pixels) micrograph combined with adaptive meshing.
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TABLE I The thermal-mechanical properties for intergranular two-
phase composites

Grain Intergranular Phase

Young’s Modulus,E (GPa) 380 145
Poisson’s Ratio,ν 0.26 0.29
CTE (×10−6/◦C) 2.4 6

of Si3N4 grains. The temperature change,1T , used in
calculating the thermal strain is−1000◦C. However, the
simulated results can be modified by noting that resid-
ual thermal stresses scale with1T and effective CTEs
are independent of1T (providing that the temperature
dependence of the CTEs of the composite constituents
is not considered). The boundary of the micrograph
is assumed to be free; however, the simulated results
would be more meaningful if the periodic boundary
condition (which will be implemented inOOF in the
future) is used.

3.1. Residual stresses in
model microstructures

Three model microstructures, square-array (Fig. 2a),
hexagon-array (Fig. 3a), and brick wall-array (Fig. 4a)

Figure 2 (a) The morphology, (b) residual thermal stressσx , (c) residual thermal stressσy, and (d) stress invariant,σx + σy, for square-array grains
with an intergranular phase.

grains with intergranular phases, were analyzed in the
present study. Both square-array and hexagon-array
grains simulate equilateral grains. However, whereas
residual thermal stress distributions and effective CTEs
in the x- and y-directions are the same for square-
array grains, they are different for hexagon-array grains.
The brick wall-array grains simulate aligned elongated
grains. UsingOOF, the calculated stress maps forσx,
σy, and the stress invariant,σx + σy, are shown in
Figs 2–4 for the three model microstructures, respec-
tively. The area fractions of the intergranular phase in
model microstructures and the statistics ofσx, σy, and
σx + σy, in the grains and the intergranular phase are
listed in Tables II and III, respectively. The stress in-
variants calculated from the analytical model are also
listed in Tables II and III to compare with those from
the numerical simulation having the same area fraction
of the intergranular phase.

For square-array grains (Fig. 2a), the intergranular
layers are oriented in either thex- or the y-direction.
It can be seen in Fig. 2b that whereasσx is tensile
in the intergranular layer parallel to thex-direction,
it becomes compressive in the intergranular layer par-
allel to they-direction. Similarly, whereasσy is tensile
in the intergranular layer parallel to they-direction, it
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TABLE I I The statistics of residual thermal stresses,σx andσy, and stress invariant,σx + σy, in grains for1T =−1000◦C

Square Hexagon Brick wall Random
(Fig. 2) (Fig. 3) (Fig. 4) (Fig. 5)

Intergranular Phase Content 0.35 0.4 0.44 0.22
σx (MPa) −94.3± 57.2 −108.3± 88.1 −244.9± 92.1 −85.1± 103
σy (MPa) −94.3± 57.2 −115.5± 90.8 −37.7± 64.1 −71.7± 107.8
σx + σy (MPa) −142± 70 −166.8± 100.8 −266.2± 80.3 −161.4± 127.6
σr+ σt (MPa) Analytical Modeling −197.5 −228.4 −253.6 −120.4

TABLE I I I The statistics of residual thermal stresses,σx andσy, and stress invariant,σx + σy, in the intergranular phase for1T =−1000◦C

Square Hexagon Brick wall Random
(Fig. 2) (Fig. 3) (Fig. 4) (Fig. 5)

Intergranular Phase Content 0.35 0.4 0.44 0.22
σx (MPa) 174.4± 212.8 161.1± 156.7 313.8± 144.2 308.1± 181
σy (MPa) 174.4± 212.8 171.8± 172.7 48.3± 131.8 259.4± 189.6
σx + σy (MPa) 378.1± 97.2 358.9± 98 374.6± 73.8 463± 100.9
σr+ σt (MPa) Analytical Modeling 366.7 342.5 322.7 427.3

Figure 3 (a) The morphology, (b) residual thermal stressσx , (c) residual thermal stressσy, and (d) stress invariant,σx + σy, for hexagon-array grains
with an intergranular phase.
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Figure 4 (a) The morphology, (b) residual thermal stressσx , (c) residual thermal stressσy, and (d) stress invariant,σx + σy, for brick wall-array
grains with an intergranular phase.

becomes compressive in the intergranular layer parallel
to thex-direction (Fig. 2c). The square grains are al-
ways in compression in both thex- and they-directions.
The stress invariant,σx + σy, is compressive in square
grains, and is tensile in the intergranular layer (Fig. 2d).
In square grains, it is noted that the stress invariant is
more compressive at grain corners. Also, in the inter-
granular layer, the stress invariant is less tensile at the
junction between the horizontal and the vertical inter-
granular layers.

For hexagon-array grains (Fig. 3a), the intergranular
layers either are in thex-direction or incline at an angle
of 30◦ with respect to they-direction. It can be seen in
Fig. 3b thatσx is more tensile in the horizontal inter-
granular layer than in the inclined intergranular layer,
and compression in the intergranular layer can be ob-
served in the region adjacent to the grain corner point-
ing in thex-direction. The distributions ofσy shown in
Fig. 3c are different from those ofσx (Fig. 3b). Whereas
σy is tensile in the inclined intergranular layer, it is com-
pressive in the horizontal intergranular layer. The stress
invariant,σx + σy, is compressive in hexagonal grains,
and is tensile in intergranular layers (Fig. 3d). In the
intergranular layer, the stress invariant is less tensile

at the junction between the horizontal and the inclined
intergranular layers.

For brick wall-array grains (Fig. 4a), the intergranu-
lar layers are oriented in either thex- or they-direction.
However, while horizontal intergranular layers are con-
tinuous, the vertical intergranular layers consist of short
segments. It can be seen in Fig. 4b thatσx is tensile
in the intergranular layer; however, it is more tensile
in the horizontal intergranular layer. In the elongated
grain,σx is more compressive in the central region of
the grain which is in consistent with a recent stress-
transfer analysis [13]. Fig. 4c shows thatσy is tensile in
the vertical intergranular layer but is compressive in the
horizontal intergranular layer. Compared toσx, σy has
a much smaller magnitude in the system (see Tables II
and III). The stress invariant,σx + σy, is compressive in
elongated grains, and is tensile in intergranular layers
(Fig. 4d).

3.2. Residual stresses in an
actual microstructure

A micrograph is converted to appm format, and the
digitized image is shown in Fig. 5a, in which random
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Figure 5 (a) The digitized micrograph, (b) residual thermal stressσx , (c) residual thermal stressσy, and (c) stress invariant,σx + σy, for an actual
microstructure of random-array grains with an intergranular phase.

distribution of isolated grains are surrounded by a con-
tinuous intergranular phase. The area fraction of inter-
granular phase in Fig. 5a is∼0.22. UsingOOF, the cal-
culated stress maps forσx,σy, andσx + σy are shown in
Fig. 5b–d, respectively. Statistical summaries of resid-
ual stresses in the grains and the intergranular phase
are also listed in Tables II and III, respectively. Forσx,
it can be seen in Fig. 5b that the region of higher ten-
sion in the intergranular phase (i.e., the lighter color)
and the region of higher compression in grains (i.e., the
darker color) tend to orient in thex-direction. Similarly,
Fig. 5c shows that the region of higher tension in the
intergranular phase and the region of higher compres-
sion in grains tend to orient in they-direction forσy.
The stress invariant,σx + σy, is compressive in grains,
and is tensile in the intergranular phase (Fig. 5d).

3.3. Effective CTEs
Whereas residual thermal stresses can be obtained di-
rectly from the simulated results, effective CTEs are
obtained by the following procedures. First, the elastic
strains in thex- and they-directions are averaged for all
elements. Division of the average elastic strains by1T
signifies the deviation of the effective CTEs from the
rule-of-mixtures CTE,αrom. Then, the effective CTEs

in the x- andy-directions,α∗x andα∗y, are obtained by
adding their deviations toαrom.

Using Equations 10, the predicted effective CTE,α∗,
from analytical modeling is shown in Fig. 6. The rule-
of-mixtures CTE,αrom, is also shown. The negative
deviation ofα∗ from αrom is because the grains has a
higher Young’s modulus but a lower CTE than the in-
tergranular phase. The calculatedα∗x andα∗y based on
the microstructures depicted by Figs 2a, 3a, 4a, and 5a
are shown in Fig. 6. Additional results for the three
model microstructures with a different area fraction of
intergranular phase than that in Figs 2a, 3a, and 4a are
also added. For square-array grains,α∗x =α∗y and only
one data is shown for each intergranular phase content
which is in excellent agreement with the effective CTE
predicted from analytical modeling. For other arrays,
α∗x 6=α∗y; however, the difference betweenα∗x andα∗y
is negligible for hexagon-array grains. Whileα∗x and
α∗y show only small deviation fromα∗ for hexagon-
array and random-array grains, they deviate signif-
icantly from α∗ for brick wall-array grains. Hence,
the microstructure with aligned elongated grains has
significant anisotropic CTEs. The effective CTEs for
unidirectional fiber-reinforced ceramics have previ-
ously been analyzed by using a composite-cylinder
model [9]. It is shown in Fig. 7 thatα∗x andα∗y for brick
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Figure 6 Effective CTEs predicted from analytical modeling and nu-
merical simulations.

Figure 7 Effective CTEs in the axial and the tangential directions pre-
dicted from a composite-cylinder model, andα∗x andα∗y obtained from
two-dimensional numerical simulations of brick wall-array grains with
an intergranular phase.

wall-array grains agree well, respectively, with the pre-
diction of the effective CTEs in the axial and the tan-
gential directions using the composite-cylinder model
(see Equations 8b and 8a in Ref. 9) despite the differ-
ence between two-dimensional and three-dimensional
geometries.

4. Concluding remarks
Residual thermal stresses and effective CTEs of in-
tergranular two-phase composites were analyzed in a
two-dimensional sense. The system consists of isolated
grains and a continuous intergranular phase. Both ana-
lytical modeling and numerical simulations were used
to analyze the system. While a composite-circle model
was adopted in analytical modeling, model microstruc-
tures of square-array, hexagon-array, and brick wall-
array grains with an intergranular phase as well as an
actual microstructure of random-array grains with an
intergranular phase were adopted for numerical simu-
lations. The following results were concluded.

• Unless the grains are elongated and aligned
(Fig. 4), the effective CTEs can be well predicted

using a simple composite-circle analytical model.
The aligned elongated grains induce significant
anisotropic effective CTEs in the two-phase com-
posite.
• The difference between the effective CTE,α∗

(Equation 10), predicted from analytical modeling
and the rule-of-mixture CTE,αrom (Equation 11),
depends mainly on the Young’s modulus ratio be-
tween the two phases. When the two phases have
the same elastic constants,α∗ =αrom. Otherwise,
α∗ shifts away fromαrom in the direction of the
CTE of the harder phase. However,αrom can be
used in general to predict the effective CTE of a
two-phase composite unless the two phases have
very different Young’s moduli.
• When the intergranular phase has a greater CTE

than the isolated grain, the intergranular phase
and the grain are subjected to hydrostatic tension
and compression, respectively. In the intergranu-
lar phase, it is noted that the hydrostatic stress is
less tensile in the region of multiple grain junction.
Also, the stress component has the highest tension
in the direction parallel to the grain boundary and
can even become compressive in the direction nor-
mal to the grain boundary.
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